If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+29x-1272=0
a = 1; b = 29; c = -1272;
Δ = b2-4ac
Δ = 292-4·1·(-1272)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-77}{2*1}=\frac{-106}{2} =-53 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+77}{2*1}=\frac{48}{2} =24 $
| 44+66+2x+24=180 | | 3/5x50=30 | | 7p^2-192p-208=0 | | 3(2x-1)+7=6x-3-2(2-3x) | | 4(2-x)+1=2x+2=5(1-4x) | | (4x-2)^2+6x=25 | | 162/x=14/28 | | 12x-6x+5+4x=-10x+7 | | 28-8y=20 | | 186/x=12/24 | | 5x-4=(1/5)(5+20x) | | 29x-13=14x-13 | | (11x-4)/x=3 | | 90=2x+x+20+50 | | 19x^2+25x=0 | | 180=2x+20+x+50 | | -1-3(1+6x)=-112 | | (x+1)/(x-1)=((-3)/(x+3))+((8)/(x²+2x-3)) | | 4.5x=7020 | | 180=x+50 | | 90=x+50 | | 2.75d=77 | | 180=2x+20+x+50+90 | | 180=3x+160 | | 90=3x+70 | | 4(2=x)+1=2x+2-5(1-4x) | | 20+5x=32 | | 180=46+2x-4 | | X-1+3x=x+7 | | 3(2x-1)+7=5x-3-2(2-4x) | | /5x+4-(2x-63)=12x+44 | | 5-2z=3z-7z+25 |